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Analytical results for the reactivity of a single-file system
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We derive analytical expressions for the reactivity of a single-file system with fast diffusion and particles
entering and leaving the system at one end. If the conversion reaction is fast, then the reactivity depends only
very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity
becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases
the reactivity goes to the geometric mean of the reaction rate constant and the rate of particles entering and
leaving the system. For large systems, the number of unconverted particles decreases exponentially with
distance from the open end.
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One-dimensional zeolites, transport of ions in biologicalwhere « and B refer to the configuration of the systefa
membranes, conduction in superionic and organic condu@articular distribution of particle over the sileshe P’s are
tors, neural transmission, and one-dimensional photonic mahe probabilities of the configuratiorisis real time, and the
terials are some of the processes and systems that can Pgs are constants that give the rates with which reactions
regarded as single-file systerf8FS [1-3|. They are one- change the occupations of the site,; corresponds to the
dimensional systems with the property that particles canngteaction that changeg into «. The rate constants in our

pass each other, which leads to very interesting kinetic efy, el arew . for an A enterin ; ;
) g in g at site 1 if vacan®,,, for a
fects[2]. Research on SFS’s has focused on the diffusion article leaving from site 1W,, for the conversion of ar

because the mean-square displacement in a SFS is pmpﬁjﬁo a B on any site, andVy for a hop of a particle to a
t!onal to the square root of time, and is not pr(_)portlonal tovacant neighboring ,site diff
g:n;ﬁo[g’D_l\”;ﬂé)hflgflfé]"a;ngyrgaargtlﬁjsrg?d_ifa’sig%n:%gtigf{ﬁﬂe If the diffusion is infinitely fast, we can derive a simpler
have mainly been used. Few studies have included reactiof@aster equation for the number of particles in the system:

[10,12,13. We have argued that this is unfortunate, because

if diffusion is fast the temporal dependence of the mean- dPy - e w1 N p
square displacement is not very relevant, but there are still dt ' S N-1""in s|'N
effects from the non-passing of the particles.
In a previous paper we have investigated steady-state N+1 N
properties of a SFS for different assumptions of the reactive +Wour S PNH_WoutgPN’ @

site distribution using DMC as well as analytical techniques

[10]. In this paper we derive exact results for the case whefyherep, is the probability that there and particles in the
all sites are reactive. These results give detailed insight intQystem. This is a master equation of a one-step Markov pro-
the relationships of the various system parameters and thtf'ess[ls].

reactivity. , _ _ , , Let Py be the solution of Eq(2) with N being the num-
_ Our model consists d§ sites forming a one-dimensional o of particles and the initial conditioRy(0)= Sy . Let
finite chain. Each site is numbered consecutively from 1 forQ also be a solution witl)x(0)= & but now for the
the site on one end, t8 for the site on the other end. Each mggter equation with an abggrbing bNoKu'ndar)Mati.e. we

site is vacant or is occupied by a particle. We have two typegenoye the term in Eq2) that corresponds to ah entering
of particles;A andB. An A particle can be converted intoBa when there aréV particles in the system. WithN=M we
particle on any site. Particles can only enter at or leave fro ave '

site 1. OnlyA’s enter, but bottA’s andB’s leave. Both types
of particles diffuse by making random hops to neighboring ;
sites if vacant. Pk(t)=Qui() + f dt'Pum(t=t)fuxt), (3

The evolution of the system is described by a master 0
equation[14,15:

with fy«(t) being the probability distribution that if at time

dPa: _ t=0 the number of particles iK, this number becomelsl
dt 2 [Waﬁpﬁ W,Bapa]v (1) . . . . . . .

B for the first time at time with M <K. This equation is called
the renewal equatiofil5]. If we takeN=M in the renewal
equation, then we hav@yk(t) =0 by definition. So we get

*Electronic address: tgtatj@chem.tue.nl the integral equation
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t T T T E
PMK(t):fodt,PMM(t_t,)fMK(t,) (4) S= infmity E

for fyk - Bproa! Wi

The probability distribution for the time that a particle
stays in the system is given My y41(t). The probability
that the particle leaves the system without being converted is
then

—_
T

foxdtexq_wrxt)fN,N+l(t)- 5)

This is equal tofN,NH(W,X) with fN,N+1 being the Laplace

transform off n 1. The reason for using this Laplace trans- 0.01
form is that it is related to the Laplace transform of the

solution of the master equation through the renewal equation. g, 1. The reactivit

0.01 1 100 10000 A/ W,

YBorod @S @ function of the rate of particles

Laplace transforming Eq4) yields entering and leaving the system The reactivity and the rate of
. . . particles entering and leaving the system are scaled with the rate
Puk(S)=Puwm(s) fuk(s). (6)  constant of the conversiow,,. S is the number of sites in the
system.
If we write the master equatiof2) in matrix-vector notation
asP=WP, and Laplace transform it we get 0 Win 12
. Win+Wout.
% (S0 =Wnm) Pu(8)=Pn(0). D The reactivity is compared to th@verage rate of particles
entering and leaving the systexn which at steady state is
With the initial condition forPyk this yields given by
Puk(s)=[(s—W) k., (8) A=Win(1=6)=Wqub. (13)
so that If X is small compared to the reaction rate const@pt, then
Bproa— A This means that almost every particle that enters
A [(s— W) Yyx the system is converted. X is much larger, then
MK(8) = ———— . €)
[(s—=W) 1:lMM Bprod_’S‘g\er (14

We define the reactivity,oq as the number of particles for M/Wi—o and S not too large. Figure 1 shows the
that is being converted per unit time. To @&,qwe have to ~ dependence for smaiand theS dependence for smadl. It
multiply the probability that a particle is converted by,  does not show this$S and ¢ dependence fof and ¢ both
and make a weighted average over the number of particles #&rge, for whichk needs to be much larger than the values in
the system. The probability that a particle is converted equalthe figure. ForS=100 we see that the reactivity may be
1_fN,N+1(Wrx)v and the rate of particles entering equa“sproportlonal toe for 0§_0.E_>, but not aroun@=0.9. For the
W, (1= N/S). At steady state, the number of particles in thelatter value the reactivity is even smaller than o+ 0.5.

system is given by10] In practice, onlyW;, can usually be varied independently.
The limit W;,— o< corresponds t@=1 and\ =W,,. So we
- IS WAPERE AR L see that there generally is an upper boundc\on
Py =( H } [ J (10 ComparingS=5 andS=100 in Fig. 1 for some finitex
N N Vvin"”\/vout Wou P 9 J

shows thaB,,.q varies less withp for largerS. We can show
that in the limitS—o the reactivity depends only ax and
W, . If the system becomes infinitely large, then the fluctua-
tions become small with respect to the number of sites. If the

Combining this results in

S-1

N X : :
Boprod= Wi, >, P91 S [1-Fyne(Weol.  (10) system is then at steady state, we can write the master equa-
N=0 tion as
Note that all these results follow exactly from the master dPy
equation(1) for infinitely fast diffusion. dt =N(Pn+1+Pno1—2Py). (15

Figure 1 shows the reactivity for two finite system sizes
and three loadings. The loadimbis defined as the probabil- Formally we can let the number of particlés run from
ity that a site is occupied at steady state. It is equall@ —o to +o0. The matrixs—W can easily be diagonalized.

036104-2



ANALYTICAL RESULTS FOR THE REACTIVITY OF A ... PHYSICAL REVIEW E67, 036104 (2003

The eigenvalues are+ 2\ (1—cosk) with —r<k=<, and  fyk(t). This means that if there aiparticles in the system

the corresponding eigenvector has componentsiléXp(We  the probability distribution that particleis in the system for
can use this to calculate elements of the inverse of the matrix timet equalsfy_, n(t). The probability that that particle

s—W: has not been converted is thén_n,N(WrX) following the
1 = cosg|N—M|k) reasoning after Eq(5). This probability can be calculated
(5= W) =g | dkm o using Eq.(9).
2m)-n $+2N(1-cok) For the profile we need the probability that siteis oc-
1[y—1 IN—M| cupied by particlen. This probability is given by
=—|— (16)
ys|ly+1 m—1\/S—m S
with PocdN,N;m,S)= =11\ N=n NE (23
y=vV1+4n/s. (17 The probability(A,,) that sitem is occupied by a particle

. . . ) that has not been converted is then given by
This then yields for the probability that a particle enters and

leaves at a later time without being converted the expression s 1M 1\ /S—m
- (s9) F:
fan+1(Wi) = vyl (18 (24)

(Here and in the rest of the paper we setW,, in the defi-  where the first summation averages over the number of par-
nition of y.) For the reactivityB,,,q we have ticles in the system anB{? is given by Eq.(10).
~ The expression above can be simplified and interpreted
Bprod= M 1—fun+1(Wh) 1= 3Wi(y—1). (19  more readily for an infinite system. With E6L6), we have

We see that the reactivity no longer depends on the loagling . n
if the system becomes large, but only on the reaction rate and fNonN=
on \. For small rates of particles entering and leaving we

again findByq— \. If the rates of entering and leaving are . )
large, then for the probability that particla has not been converted. We

see that this probability decreases exponentially.
Bprod_>()\wrx)1/2 (20 The probability P,.{n,N;m,S) becomesP,.{n,m;6)
with 6=N/S for S—cc. This limit of the combinatorial fac-
for N/W,,—. The approach to the limi&—c becomes tors yields

very slow when\ is large as can be seen in Fig. 1.

y—1

yr1 (25

The procedure for the first-passage problem above can m—1
also be used to derive theandB profiles; i.e., the distribu- Pocd N, m; 0)2( _1) oN(1—o)m ", (26)
tion of the A’s andB’s in the system. We will first deal with n

the question of what is the probability that théh particle, o i ) i i
counting from site 1, is aA. Then we will answer the ques- Substituting this expression and Eg5) in Eq. (24) yields
tion that sitemis occupied by a\. The answers to the same
questions abou’s follow trivially from those ofA’s. o(y—1)(y+1-26)""*

We are only interested in the steady state. In this case we (Am)= (y+1)™ ' (27)
have detailed balance; i.e., the number of transitions per unit
time fromN to N+ 1 particles is equal to those bif+ 1 toN.
This means that for each sequence in the number of particl

Again we find an exponential decrease but now with a char-

Seteristic length ofA =1/[In(y+1)—In(y+1—26)]. For high
o4 . Aty loadings @— 1) we find A=y/2. For low loading §— 0)

NoON;At{N,Ats- -+ — Nt=Ng, (2)  we get A=(y+1)/(20). So the characteristic length is

) ) larger for low loadings and higher rate of particles entering
where after a time lapsét; the number of particles changes anq leaving the system.

from N; to N;. 4, there is another sequence Figure 2 shows some typical profiles. The straight line
. Atr_y Ay, corresponds to the exponential decrease of(Eg). The re-
No=N;ON7_; — Ny_p, — ---At;Np. (22)  sult for finite system sizes can be understood from the fact

that smaller systems are less reactive because there are fewer
The second sequence is the time reversed sequence of thiges at which conversion can take place. As the reactivity
first one. Moreover, both sequences are equally likely bemust be equal to the number of converted particles leaving
cause of the detailed balance. Consequently, the probabilitthe systemW,{B;) must be smaller for smalle3, and be-
distribution that the number of particles in the systerKiat  cause(B;)=6—(A;) the curves in Fig. 2 must start out at
time t=0 andM with M<K at time —t for the last time is larger values of (A;). The reactivity also equals
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T T T 2x10°5. At such a low value, one would not expect an
10 influence of these sites on the kinetics, but one clearly sees
differences betweeB8=100 andS— o for all sites.

We would finally like to comment on three extensions of
our model; particles entering and leaving at both ends, finite
L $=20 _ diffusion, and other reactions. A system witls Zites and
open at both ends has a reactivity that is twice that of a
system withS sites and open at just one end provided that
S>A. DMC simulations show that i is near or smaller
thanA, then the system open at both ends is relatively more
reactive.(DMC simulations of our system open at one end
yield, as they should, results identical to the analytical ones
derived abovg.

Finite diffusion is expected to be equivalent to infinite
diffusion as long as it is much faster than other reactions. If
this is not the case, then it may become a rate determining
step. The system then becomes transport limited. As a con-
sequence the reactivity can only go down. We have seen that
in our simulationd10].

We expect that our results will change only little when we
change the details of the reaction or when interactions be-
tween the particles are includ¢di6]. Our results are a con-
W,oE5_1(A,). This means thaB;_;(A,) must be smaller sequence of the nonpassing of the particles and of the fact
for smaller S Because(A,) is larger for smallerS (A,)  that particles that stay longer in the system have a higher
must decrease faster. probability of being converted. We therefore also do not ex-

Figure 2 confirms the slow convergence of the system tgect our results to change when we change our model of
the limit S—o. At S=100 the values ofA,) drop down to  discrete sites to some continuous model.

<A,> §=5

0.1

0.01 .
S=infinity
§=50 ]

0.001 ! 'l '

FIG. 2. The probabilitiegA,) that a site is occupied by an
unconverted particle as a function of site indefor A = 16, loading
#=0.2, and various system siz&s
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