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Analytical results for the reactivity of a single-file system
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We derive analytical expressions for the reactivity of a single-file system with fast diffusion and particles
entering and leaving the system at one end. If the conversion reaction is fast, then the reactivity depends only
very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity
becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases
the reactivity goes to the geometric mean of the reaction rate constant and the rate of particles entering and
leaving the system. For large systems, the number of unconverted particles decreases exponentially with
distance from the open end.
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One-dimensional zeolites, transport of ions in biologic
membranes, conduction in superionic and organic cond
tors, neural transmission, and one-dimensional photonic
terials are some of the processes and systems that ca
regarded as single-file systems~SFS! @1–3#. They are one-
dimensional systems with the property that particles can
pass each other, which leads to very interesting kinetic
fects @2#. Research on SFS’s has focused on the diffus
because the mean-square displacement in a SFS is pr
tional to the square root of time, and is not proportional
time @3–5#. Molecular dynamics@5–7#, dynamic Monte
Carlo ~DMC! @8–10#, and reaction-diffusion equations@11#
have mainly been used. Few studies have included reac
@10,12,13#. We have argued that this is unfortunate, beca
if diffusion is fast the temporal dependence of the me
square displacement is not very relevant, but there are
effects from the non-passing of the particles.

In a previous paper we have investigated steady-s
properties of a SFS for different assumptions of the reac
site distribution using DMC as well as analytical techniqu
@10#. In this paper we derive exact results for the case w
all sites are reactive. These results give detailed insight
the relationships of the various system parameters and
reactivity.

Our model consists ofS sites forming a one-dimensiona
finite chain. Each site is numbered consecutively from 1
the site on one end, toS for the site on the other end. Eac
site is vacant or is occupied by a particle. We have two ty
of particles;A andB. An A particle can be converted into aB
particle on any site. Particles can only enter at or leave fr
site 1. OnlyA’s enter, but bothA’s andB’s leave. Both types
of particles diffuse by making random hops to neighbor
sites if vacant.

The evolution of the system is described by a mas
equation@14,15#:

dPa

dt
5(

b
@WabPb2WbaPa#, ~1!
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wherea and b refer to the configuration of the system~a
particular distribution of particle over the sites!, the P’s are
the probabilities of the configurations,t is real time, and the
W’s are constants that give the rates with which reactio
change the occupations of the sites.Wab corresponds to the
reaction that changesb into a. The rate constants in ou
model areWin for anA entering at site 1 if vacant,Wout for a
particle leaving from site 1,Wrx for the conversion of anA
into a B on any site, andWdiff for a hop of a particle to a
vacant neighboring site.

If the diffusion is infinitely fast, we can derive a simple
master equation for the number of particles in the system

dPN

dt
5WinF12

N21

S GPN212WinF12
N

SGPN

1Wout

N11

S
PN112Wout

N

S
PN , ~2!

wherePN is the probability that there areN particles in the
system. This is a master equation of a one-step Markov p
cess@15#.

Let PNK be the solution of Eq.~2! with N being the num-
ber of particles and the initial condition;PNK(0)5dNK . Let
QNK also be a solution withQNK(0)5dNK , but now for the
master equation with an absorbing boundary atM; i.e., we
remove the term in Eq.~2! that corresponds to anA entering
when there areM particles in the system. WithN>M we
have

PNK~ t !5QNK~ t !1E
0

t

dt8PNM~ t2t8! f MK~ t8!, ~3!

with f MK(t) being the probability distribution that if at time
t50 the number of particles isK, this number becomesM
for the first time at timet with M,K. This equation is called
the renewal equation@15#. If we takeN5M in the renewal
equation, then we haveQMK(t)50 by definition. So we get
the integral equation
©2003 The American Physical Society04-1
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PMK~ t !5E
0

t

dt8PMM~ t2t8! f MK~ t8! ~4!

for f MK .
The probability distribution for the time that a partic

stays in the system is given byf N,N11(t). The probability
that the particle leaves the system without being converte
then

E
0

`

dt exp~2Wrxt ! f N,N11~ t !. ~5!

This is equal tof̂ N,N11(Wrx) with f̂ N,N11 being the Laplace
transform off N,N11. The reason for using this Laplace tran
form is that it is related to the Laplace transform of t
solution of the master equation through the renewal equat
Laplace transforming Eq.~4! yields

P̂MK~s!5 P̂MM~s! f̂ MK~s!. ~6!

If we write the master equation~2! in matrix-vector notation
as Ṗ5WP, and Laplace transform it we get

(
M

~sdNM2WNM!P̂M~s!5PN~0!. ~7!

With the initial condition forPMK this yields

P̂MK~s!5@~s2W!21#MK , ~8!

so that

f̂ MK~s!5
@~s2W!21#MK

@~s2W!21#MM

. ~9!

We define the reactivityBprod as the number of particle
that is being converted per unit time. To getBprod we have to
multiply the probability that a particle is converted byWin
and make a weighted average over the number of particle
the system. The probability that a particle is converted equ
12 f̂ N,N11(Wrx), and the rate of particles entering equa
Win(12N/S). At steady state, the number of particles in t
system is given by@10#

PN
(ss)5S S

ND F Wout

Win1Wout
GSF Win

Wout
GN

. ~10!

Combining this results in

Bprod5Win (
N50

S21

PN
(ss)F12

N

SG@12 f̂ N,N11~Wrx!#. ~11!

Note that all these results follow exactly from the mas
equation~1! for infinitely fast diffusion.

Figure 1 shows the reactivity for two finite system siz
and three loadings. The loadingu is defined as the probabil
ity that a site is occupied at steady state. It is equal to@10#
03610
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u5
Win

Win1Wout
. ~12!

The reactivity is compared to the~average! rate of particles
entering and leaving the systeml, which at steady state is
given by

l5Win~12u!5Woutu. ~13!

If l is small compared to the reaction rate constantWrx , then
Bprod→l. This means that almost every particle that ent
the system is converted. Ifl is much larger, then

Bprod→SuWrx ~14!

for l/Wrx→` and S not too large. Figure 1 shows theu
dependence for smallSand theSdependence for smallu. It
does not show thisS and u dependence forS and u both
large, for whichl needs to be much larger than the values
the figure. ForS5100 we see that the reactivity may b
proportional tou for u<0.5, but not aroundu50.9. For the
latter value the reactivity is even smaller than foru50.5.

In practice, onlyWin can usually be varied independentl
The limit Win→` corresponds tou51 andl5Wout. So we
see that there generally is an upper bound onl.

ComparingS55 andS5100 in Fig. 1 for some finitel
shows thatBprod varies less withu for largerS. We can show
that in the limitS→` the reactivity depends only onl and
Wrx . If the system becomes infinitely large, then the fluctu
tions become small with respect to the number of sites. If
system is then at steady state, we can write the master e
tion as

dPN

dt
5l~PN111PN2122PN!. ~15!

Formally we can let the number of particlesN run from
2` to 1`. The matrixs2W can easily be diagonalized

FIG. 1. The reactivityBprod as a function of the rate of particle
entering and leaving the systeml. The reactivity and the rate o
particles entering and leaving the system are scaled with the
constant of the conversionWrx . S is the number of sites in the
system.
4-2
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The eigenvalues ares12l(12cosk) with 2p,k<p, and
the corresponding eigenvector has components exp(ikN). We
can use this to calculate elements of the inverse of the ma
s2W:

@~s2W!21#NM5
1

2pE2p

p

dk
cos~ uN2M uk!

s12l~12cosk!

5
1

ysFy21

y11G uN2M u

~16!

with

y5A114l/s. ~17!

This then yields for the probability that a particle enters a
leaves at a later time without being converted the expres

f̂ N,N11~Wrx!5
y21

y11
. ~18!

~Here and in the rest of the paper we sets5Wrx in the defi-
nition of y.! For the reactivityBprod we have

Bprod5l@12 f̂ N,N11~Wrx!#5 1
2 Wrx~y21!. ~19!

We see that the reactivity no longer depends on the loadinu
if the system becomes large, but only on the reaction rate
on l. For small rates of particles entering and leaving
again findBprod→l. If the rates of entering and leaving a
large, then

Bprod→~lWrx!
1/2 ~20!

for l/Wrx→`. The approach to the limitS→` becomes
very slow whenl is large as can be seen in Fig. 1.

The procedure for the first-passage problem above
also be used to derive theA andB profiles; i.e., the distribu-
tion of theA’s andB’s in the system. We will first deal with
the question of what is the probability that thenth particle,
counting from site 1, is anA. Then we will answer the ques
tion that sitem is occupied by anA. The answers to the sam
questions aboutB’s follow trivially from those ofA’s.

We are only interested in the steady state. In this case
have detailed balance; i.e., the number of transitions per
time fromN to N11 particles is equal to those ofN11 to N.
This means that for each sequence in the number of part

N00
→

N1Dt1

→
N2Dt2

→
••• →

DtT21

NT5N0 , ~21!

where after a time lapseDt i the number of particles change
from Ni to Ni 11, there is another sequence

N05NT0
→

NT21 →
DtT21

NT22 →
DtT22

•••Dt1

→
N0 . ~22!

The second sequence is the time reversed sequence o
first one. Moreover, both sequences are equally likely
cause of the detailed balance. Consequently, the probab
distribution that the number of particles in the system isK at
time t50 andM with M,K at time2t for the last time is
03610
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f MK(t). This means that if there areN particles in the system
the probability distribution that particlen is in the system for
a time t equalsf N2n,N(t). The probability that that particle
has not been converted is thenf̂ N2n,N(Wrx) following the
reasoning after Eq.~5!. This probability can be calculate
using Eq.~9!.

For the profile we need the probability that sitem is oc-
cupied by particlen. This probability is given by

Pocc~n,N;m,S!5S m21

n21 D S S2m

N2nD Y S S

ND . ~23!

The probability^Am& that sitem is occupied by a particle
that has not been converted is then given by

^Am&5 (
N50

S

PN
(ss)S S

ND 21

(
n51

m S m21

n21 D S S2m

N2nD f̂ N2n,N~Wrx!,

~24!

where the first summation averages over the number of
ticles in the system andPN

(ss) is given by Eq.~10!.
The expression above can be simplified and interpre

more readily for an infinite system. With Eq.~16!, we have

f̂ N2n,N5S y21

y11D n

~25!

for the probability that particlen has not been converted. W
see that this probability decreases exponentially.

The probability Pocc(n,N;m,S) becomesPocc(n,m;u)
with u5N/S for S→`. This limit of the combinatorial fac-
tors yields

Pocc~n,m;u!5S m21

n21 D un~12u!m2n. ~26!

Substituting this expression and Eq.~25! in Eq. ~24! yields

^Am&5
u~y21!~y1122u!m21

~y11!m
. ~27!

Again we find an exponential decrease but now with a ch
acteristic length ofD51/@ ln(y11)2ln(y1122u)#. For high
loadings (u→1) we find D'y/2. For low loading (u→0)
we get D'(y11)/(2u). So the characteristic length i
larger for low loadings and higher rate of particles enter
and leaving the system.

Figure 2 shows some typical profiles. The straight li
corresponds to the exponential decrease of Eq.~27!. The re-
sult for finite system sizes can be understood from the
that smaller systems are less reactive because there are
sites at which conversion can take place. As the reacti
must be equal to the number of converted particles leav
the system,Wout̂ B1& must be smaller for smallerS, and be-
cause^B1&5u2^A1& the curves in Fig. 2 must start out a
larger values of ^A1&. The reactivity also equals
4-3
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Wrx(n51
S ^An&. This means that(n51

S ^An& must be smaller
for smaller S. Becausê A1& is larger for smallerS, ^An&
must decrease faster.

Figure 2 confirms the slow convergence of the system
the limit S→`. At S5100 the values of̂An& drop down to

FIG. 2. The probabilitieŝ An& that a site is occupied by a
unconverted particle as a function of site indexn for l516, loading
u50.2, and various system sizesS.
i-

hy

03610
o

231025. At such a low value, one would not expect a
influence of these sites on the kinetics, but one clearly s
differences betweenS5100 andS→` for all sites.

We would finally like to comment on three extensions
our model; particles entering and leaving at both ends, fin
diffusion, and other reactions. A system with 2S sites and
open at both ends has a reactivity that is twice that o
system withS sites and open at just one end provided th
S@D. DMC simulations show that ifS is near or smaller
thanD, then the system open at both ends is relatively m
reactive.~DMC simulations of our system open at one e
yield, as they should, results identical to the analytical o
derived above.!

Finite diffusion is expected to be equivalent to infini
diffusion as long as it is much faster than other reactions
this is not the case, then it may become a rate determin
step. The system then becomes transport limited. As a c
sequence the reactivity can only go down. We have seen
in our simulations@10#.

We expect that our results will change only little when w
change the details of the reaction or when interactions
tween the particles are included@16#. Our results are a con
sequence of the nonpassing of the particles and of the
that particles that stay longer in the system have a hig
probability of being converted. We therefore also do not e
pect our results to change when we change our mode
discrete sites to some continuous model.
ers,

J.
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